TRPC channels are necessary mediators of pathologic cardiac hypertrophy.

نویسندگان

  • Xu Wu
  • Petra Eder
  • Baojun Chang
  • Jeffery D Molkentin
چکیده

Pathologic hypertrophy of the heart is regulated through membrane-bound receptors and intracellular signaling pathways that function, in part, by altering Ca(2+) handling and Ca(2+)-dependent signaling effectors. Transient receptor potential canonical (TRPC) channels are important mediators of Ca(2+)-dependent signal transduction that can sense stretch or activation of membrane-bound receptors. Here we generated cardiac-specific transgenic mice that express dominant-negative (dn) TRPC3, dnTRPC6, or dnTRPC4 toward blocking the activity of the TRPC3/6/7 or TRPC1/4/5 subfamily of channels in the heart. Remarkably, all three dn transgenic strategies attenuated the cardiac hypertrophic response following either neuroendocrine agonist infusion or pressure-overload stimulation. dnTRPC transgenic mice also were partially protected from loss of cardiac functional performance following long-term pressure-overload stimulation. Importantly, adult myocytes isolated from hypertrophic WT hearts showed a unique Ca(2+) influx activity under store-depleted conditions that was not observed in myocytes from hypertrophied dnTRPC3, dnTRPC6, or dnTRPC4 hearts. Moreover, dnTRPC4 inhibited the activity of the TRPC3/6/7 subfamily in the heart, suggesting that these two subfamilies function in coordinated complexes. Mechanistically, inhibition of TRPC channels in transgenic mice or in cultured neonatal myocytes significantly reduced activity in the calcineurin-nuclear factor of activated T cells (NFAT), a known Ca(2+)-dependent hypertrophy-inducing pathway. Thus, TRPC channels are necessary mediators of pathologic cardiac hypertrophy, in part through a calcineurin-NFAT signaling pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling.

The calcium/calmodulin-dependent phosphatase calcineurin plays a central role in the control of cardiomyocyte hypertrophy in response to pathological stimuli. Although calcineurin is present at high levels in normal heart, its activity appears to be unaffected by calcium during the course of a cardiac cycle. The mechanism(s) whereby calcineurin is selectively activated by calcium under patholog...

متن کامل

TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy.

Angiotensin (Ang) II participates in the pathogenesis of heart failure through induction of cardiac hypertrophy. Ang II-induced hypertrophic growth of cardiomyocytes is mediated by nuclear factor of activated T cells (NFAT), a Ca(2+)-responsive transcriptional factor. It is believed that phospholipase C (PLC)-mediated production of inositol-1,4,5-trisphosphate (IP(3)) is responsible for Ca(2+) ...

متن کامل

TRPC channels as effectors of cardiac hypertrophy.

Transient receptor potential (TRP) channels of multiple subclasses are expressed in the heart, although their functions are only now beginning to emerge, especially for the TRPC subclass that appears to regulate the cardiac hypertrophic response. Although TRP channels permeate many different cations, they are most often ascribed a specific biological function because of Ca(2+) influx, either fo...

متن کامل

TRPC channels as prospective targets in atherosclerosis: terra incognita.

Transient Receptor Potential Canonical (TRPC) proteins are non-selective cation channels ubiquitously expressed throughout the cardiovascular system, where they participate as Ca2+/Na+-permeable channels and/or signaling platforms in various physiological and pathophysiological mechanisms. TRPCs have been implicated in essential hypertension, cardiac hypertrophy and endothelial dysfunction. Des...

متن کامل

TRPC3 as a key player in electrical remodelling of atrial myocardium

Recent evidence suggests involvement of transient receptor potential (TRP)-related cation channels in cardiac physiology and pathophysiology, with TRPC3 as one potential key player in cardiac hypertrophy. It has been suggested that TRPC3 is upregulated in hypertrophy development and contributes to Ca2+ signals that govern pathological remodelling. As TRPC proteins form nonselective cation chann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 15  شماره 

صفحات  -

تاریخ انتشار 2010